秀站网,秀执着,秀梦想,一个爱秀的地方!

自媒体资讯网

热门关键词:  as  i hone  阿萨德  网站
你务必要搞清楚的十大数据挖掘知识点
来源:
作者:
时间:2018-05-26
浏览热度:
#评论#
[ 导读 ] 数据挖掘是指有组织有目的地收集数据、分析数据,并从这些大量数据提取出需要的有用信息,从而寻找出数据中存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构。
数据挖掘是神马

数据挖掘的含义

数据挖掘是指有组织有目的地收集数据、分析数据,并从这些大量数据提取出需要的有用信息,从而寻找出数据中存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构。

数据挖掘是一种从大量数据中寻找存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构的技术,是统计学、数据库技术和人工智能技术等技术的综合。

数据挖掘的本质

数据挖掘的本质就是寻找出数据中存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构。

数据挖掘的学科联系

数据挖掘是一门涉及面很广的交叉学科,包括数理统计、人工智能、计算机等。涉及机器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。

数据挖掘的价值、目的、作用

数据挖掘的价值

数据挖掘大部分的价值在于利用数据挖掘技术改善预测模型,产生学术价值、促进生产、产生并促进商业利益,一切都是为了商业价值(数据——>信息——>知识——>商业)。

数据挖掘的目的

数据挖掘的最终目的是要实现数据的价值,所以,单纯的数据挖掘是没有多大意义的。

数据挖掘的作用

从大量数据中寻找存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构。

数据挖掘技术产生的背景

1. 数据正在以空前的速度增长,现在的数据是海量的大数据。现在,不缺乏数据,但是却面临一个尴尬的境地——数据极其丰富,信息知识匮乏。

2. 海量的大数据已经远远超出了人类的理解能力,如果不借助强大的工具和技术,很难弄清楚大数据中所蕴含的信息和知识。重要决策如果只是基于决策制定者的个人经验,而不是基于信息、知识丰富的数据,那么,这就极大地浪费了数据,也极大地给我们的商业、学习、工作、生产带来不便和巨大的阻碍。所以,能够方便、高效、快速地从大数据里提取出巨大的信息和知识是必须面对的,因此,数据挖掘技术应运而生。数据挖掘填补了数据和信息、知识之间的鸿沟。

3. 数据挖掘技术有助于实现从 DT(数据时代)向 KT(知识时代)转变。

数据挖掘与数据分析的区别

数据分析的两种说法

即广义的数据分析和狭义的数据分析。广义的数据分析包括狭义的数据分析和数据挖掘,而我们常说的数据分析就是指狭义的数据分析。

数据分析(狭义)

(1) 数据分析(狭义)的定义:简单来说,狭义的数据分析就是对数据进行分析。专业的说法,狭义的数据分析是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用。

(2) 作用:它主要实现三大作用:现状分析、原因分析、预测分析(定量)。狭义的数据分析的目标明确,先做假设,然后通过数据分析来验证假设是否正确,从而得到相应的结论。

(3)方法:主要采用对比分析、分组分析、交叉分析、回归分析等分析方法;

(4)结果:狭义的数据分析一般都是得到一个指标统计量结果。比如,总和、平均值等,这些指标数据都需要与业务结合进行解读,才能发挥出数据的价值与作用。

数据挖掘

(1)定义:数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。

(2)作用:数据挖掘主要侧重解决四类问题,即分类、聚类、关联和预测(定量、定性)。数据挖掘的重点在寻找未知的模式与规律。比如,我们常说的数据挖掘案例:啤酒与尿布、安全套与巧克力等,这就是事先未知的,但又是非常有价值的信息。

(3)方法:主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘。

(4)结果:输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。

总结

数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策。所以数据分析(狭义)与数据挖掘构成广义的数据分析。

数据挖掘软件及其发展

1. 第一代,代表软件:Salford Systems 公司早期的 CART 系统。

2. 第二代,代表软件:SAS Enterprise Miner;DBMiner,DBMiner 是加拿大 SimonFraser 大学开发的一个多任务数据挖掘系统,它的前身是 DBLearn。

3. 第三代,代表软件:SPSS Clementine,SPSS Clementine 是 SPSS 公司的一个数据挖掘平台;RapidMiner,RapidMiner 是世界领先的数据挖掘解决方案。

4. 第四代,正在开发。

数据挖掘技术及其分类

数据挖掘技术(方法)分为两大类

(1)预言(Predication):用历史预测未来。

(2)描述(Description):了解数据中潜在的规律。

有哪些数据挖掘技术(方法)

数据挖掘常用的方法有:分类、聚类、回归分析、关联规则、神经网络、特征分析、偏差分析等。这些方法从不同的角度对数据进行挖掘。

(1)分类

分类的含义:就是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类。分类是依靠给定的类别对对象进行划分的。

分类的目的(作用):其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别中。

分类的应用:客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测、应用分类、趋势预测等。

主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。

分类算法的局限:分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。

(2)聚类

聚类的含义:聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。

聚类与分类的区别:聚类类似于分类,但是,与分类不同的是,聚类不依靠给定的类别对对象进行划分,而是根据数据的相似性和差异性将一组数据分为几个类别。

相关文档:

关于大数据行业的20个主要大数据..

泄露5000万用户数据,何以成脸书..

关于大数据你应该了解的五件事儿..